1st Canadian Symposium on Lysosomal Diseases
October 2018

pegunigalsidase alfa for Fabry disease

Dr. Michael L. West

Division of Nephrology,
Department of Medicine
Dalhousie University Halifax NS
Disclosures

Dr. West has received research funding, honoraria and/or consultant fees from the following:

Alexion
Amicus Therapeutics
AvroBio
Excelsior Pharma
Idorsia
Protalix
Sanofi-Genzyme
Shire
Sumitomo Pharma
Pegunigalsidase alfa - Novel Enzyme Replacement Therapy for the Treatment of Patients with Fabry Disease

- A recombinant PEGylated enzyme expressed by Protalix’s proprietary plant cell-based expression system, ProCellEx®.

- Phase I/II in naïve Fabry patients has successfully completed
 - B-102-F01/F02- NCT01678898/NCT01769001

- Phase III program – 3 studies are on going world wide
 - PB-102-F20 NCT02795676
 - PB-102-F30 NCT03018730
 - PB-102-F50 NCT03180840

- Has received
 - FDA - Fast Track Designation - 2018
 - EMA - Orphan Drug Designation - 2017
Pegunigalsidase alfa: PEGylated, Chemically Modified α-Gal-A Enzyme

Subunits linked through a 2KDa PEG cross-linker resulting in 114 kDa enzyme. Contains additional PEG moieties bound to only one subunit through a lysine residue.

Extended stability in plasma and in target cells lysosomal condition.

PEG moieties are masking some enzyme epitope which could be recognized by the immune system → Potentially reducing the immune response to the enzyme plus reduced cross reactivity to pre-existing ADA.
Prolonged Stability in Biological Matrices – *in vitro*
Compared to Other ERTs-Quantified by an Activity Assay

Stability in human plasma at 37°C (pH=7.4)

- *P=0.02

Stability in lysosomal-like conditions (pH=4.6)

- **P<<0.01

Prolonged stability in plasma and lysosomal-like conditions implicating for higher potential to deliver an active long-functional enzyme to its site of action.

Ex Vivo: Internalization and lysosomal localization of pegunigalsidase alfa into skin fibroblasts derived from Fabry patients

α pegunigalsidase alfa | α LAMP-2 | Overlay + DAPI

Control

Panel A: **α pegunigalsidase alfa**

Panel B: **α LAMP-2**

Panel C: **Overlay + DAPI**

Treated with pegunigalsidase alfa

Panel D: **α pegunigalsidase alfa**

Panel E: **α LAMP-2**

Panel F: **Overlay + DAPI**

Localization of the exogenous pegunigalsidase alfa enzyme into the lysosome of Fabry skin fibroblasts

Cells were incubated for 24 h in the absence (panels A–C) or presence (panels D–F) of PRX-102 (160 μg/mL). PRX-102 was labeled with anti PRX-102 antibodies (red fluorophore). Lysosome labeling was achieved with anti LAMP-2 antibody (green fluorophore). Cellular nuclei were labeled using DAPI (blue fluorophore). The overlap is represented in yellow when the images are superimposed (panel F).
Pharmacokinetics: pegunigal sidingase alfa
Longer half life and higher exposure compared to other ERT

Plasma drug concentration vs. time

- **agalsidase beta time frame**
- **pegunigal sidingase alfa time frame**

Up to 14 days

<table>
<thead>
<tr>
<th>Concentration (ng/mL)</th>
<th>Time (hours) - 14 Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>100,000</td>
<td>PRX-102 1mg/Kg</td>
</tr>
<tr>
<td>10,000</td>
<td>Fabrazyme 1mg/Kg</td>
</tr>
<tr>
<td>1,000</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

T½: Approx. 80 hours

- ** pegunigalsidase alfa (1mg/Kg)**: 78.9
- ** agalsidase beta (1mg/Kg)**: 2
- ** agalsidase alfa (0.2mg/Kg)**: 1.8

AUC (0-∞):

- **>35 fold from current ERTs**
 - pegunigalsidase alfa (1mg/Kg): 23,454
 - agalsidase beta (1mg/Kg): 649

*agalsidase beta – USPI ; ** agalsidase alfa - SMPC
Phase I/II- Naïve Fabry Patients
Stabilization of renal parameters & Reduction of Gb3 inclusion in Kidney Peritubular Capillaries

Renal Function- 24M

Kidney Biopsies- 6M

Hughes, LDN 2017; Schiffmann New Horizons in Fabry Disease 2017
Study Objective and Design
PB-102-F30 NCT03018730- Ongoing in Canada, Europe and Australia (Ex-US Study)

- Multicenter, open label switch over study to evaluate the safety and efficacy of switching from agalsidase alfa to pegunigalsidase alfa
 - 22 adult FD patients (male and female)
 - Previously treated with agalsidase alfa for at least 2 years

Main Safety and efficacy endpoints

- Safety
 - Clinical laboratory tests
 - Electrocardiogram
 - Treatment-emergent adverse events
 - Ability to taper off infusion premedication throughout the first 2 months of the study
 - Requirement for use of premedication overall to manage infusion reactions
 - Treatment-emergent anti-PRX-102 antibodies

- Efficacy
 - Mean annualized change in eGFR_{CKD-EPI}
 - Biomarkers (Plasma Lyso-Gb3, Plasma Gb3, Urine Lyso-Gb3)
 - Frequency of pain medication use
 - Short Form Brief Pain Inventory (BPI)
 - Mainz Severity Score Index (MSSI)
 - Quality of life EQ-5D-5L

[Diagram showing the study timeline with phases for agalsidase alfa and pegunigalsidase alfa, including screening, switch, 3 months, 12 months, and extension study phases.]
Study Main Inclusion and Exclusion Criteria

Main inclusion criteria

- Age: 18-60 years
- A documented diagnosis of Fabry disease.
- Treatment with agalsidase alfa for at least 2 years and on a stable dose for at least 6 months
- eGFR ≥ 40 ml/min/1.73 m² by CKD-EPI
- Availability of at least 2 historical serum creatinine evaluations since starting agalsidase alfa treatment and not more than 2 years

Main exclusion criteria

- History of anaphylaxis or Type 1 hypersensitivity reaction to agalsidase alfa/beta
- History of renal dialysis or transplantation
- History of Acute Kidney injury in the 12 months prior to screening
- Start or change in dose of ACEi or ARB in the 4 weeks prior to screening
- Urine protein to creatinine ratio (UPCR) > 0.5 g/g and not treated with ACEi or ARB
- Cardiovascular and/or Cerebrovascular event in the 6 months before randomization
- Congestive heart failure NYHA Class IV
Baseline characteristics of first 16 patients (9 males and 7 females)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>ALL (Mean)</th>
<th>ALL (SD)</th>
<th>Female (Mean)</th>
<th>Female (SD)</th>
<th>Male (Mean)</th>
<th>Male (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of patients</td>
<td>n=16</td>
<td></td>
<td>n=7</td>
<td></td>
<td>n=9</td>
<td></td>
</tr>
<tr>
<td>Age at screening years</td>
<td>46.3</td>
<td>10.1</td>
<td>47.1</td>
<td>12.4</td>
<td>45.7</td>
<td>8.6</td>
</tr>
<tr>
<td>Age started ERT years</td>
<td>37.9</td>
<td>10.9</td>
<td>39.9</td>
<td>11.5</td>
<td>36.4</td>
<td>10.9</td>
</tr>
<tr>
<td>Residual enzyme activity – leucocytes %</td>
<td>15.5</td>
<td>13.1</td>
<td>27.9</td>
<td>10.2</td>
<td>5.9</td>
<td>2.6</td>
</tr>
<tr>
<td>Residual enzyme activity – plasma %</td>
<td>14.1</td>
<td>15.6</td>
<td>28.5</td>
<td>12.7</td>
<td>2.9</td>
<td>3.9</td>
</tr>
<tr>
<td>Number of patients with proteinuria UPCR≥500 mg/gr</td>
<td>3</td>
<td></td>
<td>1</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Number of patients treated with ACEi/ARB</td>
<td>8</td>
<td></td>
<td>4</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Plasma Lyso-Gb$_3$ nM; (normal ≤ 2.4 nM)</td>
<td>36.18</td>
<td>47.16</td>
<td>13.81</td>
<td>6.11</td>
<td>53.57</td>
<td>58.01</td>
</tr>
<tr>
<td>Plasma Gb$_3$ nM; (normal ≤ 4961 nM)</td>
<td>6049</td>
<td>2219</td>
<td>5468</td>
<td>1875</td>
<td>6501</td>
<td>2464</td>
</tr>
<tr>
<td>Urine Lyso-Gb$_3$, pM/mM creatinine; (normal-0 pM/mM)</td>
<td>47.29</td>
<td>40.99</td>
<td>45.48</td>
<td>31.11</td>
<td>49.11</td>
<td>51.63</td>
</tr>
<tr>
<td>eGFR$_{CKD-EPI}$ at Baseline (V1) - mL/min/1.73m2</td>
<td>80.0</td>
<td>21.8</td>
<td>86.0</td>
<td>17.8</td>
<td>75.4</td>
<td>24.5</td>
</tr>
<tr>
<td>Annualized Slope on Replagal (~2Y, including V1) - mL/min/1.73m2/year</td>
<td>-6.8</td>
<td>7.4</td>
<td>-5.1</td>
<td>4.4</td>
<td>-8.0</td>
<td>9.2</td>
</tr>
</tbody>
</table>
Individual eGFR values

- Pt. #1 (M)
- Pt. #2 (M)
- Pt. #3 (M)
- Pt. #4 (M)
- Pt. #8 (M)
- Pt. #11 (M)
Individual eGFR values (continued)
Individual eGFR values (continued)

Pt. #7 (F)

Pt. #6 (F)

Pt. #5 (F)

Pt. #9 (F)

Pt. #12 (F)

Pt. #14 (F)
Mean and individual annualized eGFR slopes pre- and post-treatment with pegunigalsidase alfa (6 M on Unigal; n=16)-preliminary results

* Based on available historical serum creatinine for approximately 2 years and study 3 month screening period values

eGFR mL/min/1.73 m² is calculated using CKD-EPI formula

eGFR Slope = mL/min/1.73 m²/year
Summary

- Pegunigalsidase alfa is a PEGylated enzyme with unique biochemical characteristics
 - Higher stability in plasma and lysosomal-like conditions
 - Prolonged half-life and higher exposure in FD patients
- Reduction of Gb3 inclusion in PTC derived from kidney biopsies was observed in Naïve treated Fabry patients
- Preliminary results from BRIDGE study indicate improvement in kidney function in patients switched from agalsidase alfa
Acknowledgements

Special thanks to:

- The patients and their families
- Bridge study Investigators:
 - Ales Linhart
 - Derralynn Hughes
 - Camilla Tøndel
 - Kathy Nicholls
 - Ana Jovanovic
 - Pilar Giraldo
 - Mirjam Langeveld
 - Patrick Deegan
 - Bojan Vujkovac
 - Tarekegn Hiwot

- Study site clinical teams