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ABSTRACT 
 
Advances in modern engine development are becoming 
more and more challenging. The intense increase of thermal 
and mechanical loads interacting in the combustion 
chamber as a result of higher power density requires 
perfecting the function of piston rings especially with regard 
to emission reduction technology. 
The major obstacle to predicting blow-by and oil 
consumption is the behavior of the piston rings under 
engine operating conditions. Design and functionality of a 
piston ring are highly influenced by the operating 
conditions. To understand the fundamentals of ring 
behavior and in this way the effects on blow-by and oil 
consumption, an analytical tool has been developed to 
transform the physical boundary conditions of engine 
kinematics and ring design into a reliable simulation. This 
paper describes the physical basics of ring movement under 
dynamic loading conditions and gives an overview of the 
results. It also was necessary to validate the model with real 
engine measurements to understand the fundamentals of 
ring design as a function of the described mathematics.
INTRODUCTION 
 
Piston rings in engines achieve efficient sealing with both 
the cylinder wall in a radial direction and the top or bottom 
sides of the piston ring grooves in an axial direction. The 
contact pressure on the cylinder wall is achieved by the 
inherent spring force of the ring in conjunction with the gas 
pressure behind the ring. The contact on the side of the 
piston groove is achieved by the axial forces acting on the 
ring. The axial forces are composed of the gas pressure 
above and under the ring, the mass forces (inertia), and the 
friction forces. These forces change their direction during 
the cycle. As a result, the piston ring moves from one side 
of the groove to the other during the cycle. 
 
Gas and friction forces not only create axial forces but also 
moments based on the piston ring center of mass. The 
motion of the ring starts when the resulting axial forces 
change directions and can no longer overcome the moments 
acting on the ring. In the same way the ring motion ends 
when the resulting axial force becomes high enough to 
overcome the moments acting on the ring sufficiently to 
force the position of the piston ring to the opposite side. 
Hence the change of position of a piston ring is not a 
sudden effect, but more a process which can possibly last 60 
degrees of crank angle or more. There are also movements 
where the change of position starts, but full contact on the 
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opposite side of the groove can not be achieved. In these 
cases the piston ring can no longer create a seal against the 
ring groove flank and the combustion gas can pass around 
the back of the piston ring (this can occur both on the 
bottom side and top side). This has a significant effect on 
blow-by. 
 
PART 1:  INTRODUCTION MODEL 
 
A simplified model is used to explain the mathematical 
relationship for the stabilized flank contact and therewith 
the fundamentals of the piston ring position change.  In 
addition the simplified model is used to explain the 
influence of moments on the piston ring axial motion. It 
also describes the mathematical way of deriving a criterion 
for the stabilized flank contact. 
 
The simplified model is illustrated in Figure 1. In detail 
forces and moments are presented in the next sections 
(equations 30a, 30b). 
  
Simplifications 1:  

a)  A rectangular ring is used. 
 
b) The pressure function above and under the ring is 
linear. 
 
c)  In comparison to the gas pressure, friction forces are 
negligible. 
 
 
With this simplification the fundamentals of ring movement 
are easily explained.  It is also shown that a ring has to twist 
and arch during the change of position as it is influenced by 
moments and reaction forces. 
 
Figure 1 shows the piston ring position on the bottom side 
of the ring groove with the gas pressure pb and the volume 
Volb behind the ring. 
pb depends on the gas flow in and out through the 
clearances between the piston ring groove and the ring. 
 
 
 
 
 
 
 
 
 
 
 
1 These simplifications are only used in this section and not assumed for 
the whole paper. The subsequent sections are based on the realistic 
physical conditions. 
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Figure 1: Typical gas pressure on the flanks of the 

piston ring during the cycle 
 
 
The next section describes that the resulting axial gas force 
and the resulting gas moment are independent of the 
pressure pb behind the ring. A linear formulation for the 
pressure in the top clearance is used: 
 
Where: 
The forces are positive in an upward direction.  
 

( ) ( ) ( )o ob b
1 xp x p p p p
2 a

= − + − −  

  (1) 
 
At the bottom clearance: 
 

( ) ( ) ( )u ub b
1 xp x p p p p
2 a

= + + + −  

  (2) 
 

The resulting gas pressure ( )rp x  is calculated with the 

sum of (1) and (2), if the abbreviation 
o u

p p p∆ = −  is 

implemented. 
 

( )r
1 xp x p p
2 a

= − ∆ − ∆                   (3) 
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The axial gas force and the gas moment acting on the ring 
are calculated from equation (3) as shown below. Both 
values are based on the circumferential length.  

( )

( )

a / 2
F p x dx
gas r

a / 2
1

F a p
gas 2

a / 2
M p x x dx

gas r
a / 2
1 2M a p

gas 12

= ∫
−

= − ∆

= ∫
−

= − ∆

 (4 a, b) 

 
The resulting axial force is comprised of the mass force and 
the gas force. The resulting moment is equal to the gas 
moment because the mass force causes no moment at the 
center of mass. 
 

mas

2
gas

1
F F a p

2
1

M M a p
12

= − ∆

= = − ∆

    (5 a, b) 

 
To reach a balance a force Fcontact is needed. Fcontact acts at 
the bottom flank of the groove and its point of contact has 
the distance h from the center of mass. The aim of this 
calculation is to determine the lever arm h. 
. 
 

( )contact mas gasF F F F= − = − +   (5 c) 

  

The Moment of contactF with the lever arm h is: 

 

( )contact mas gasM F F h= − +   (5 d) 

 
To reach the balance of moments: 
 

( )
contact

mas gas

M M

M F F h

= −

− = − +
    or 

 

 
 3
mas

2

1
F p a h M

2

1
M p a

12

− ∆ =

= − ∆

 
 
 

       (6) 

 

2

mas

1
p a

12h
1

F p a
2

− ∆
=

− ∆
 (7) 

 
If this lever arm mathematically extends beyond the outer 
dimensions of the piston ring, then a contact on one piston 
groove side is not possible. For the balance of the forces 
and moments, a contact on both sides of the ring is 
necessary. 
 
The new criterion for the stability contact on one groove 
side is: 
 

a a
 h

2 2
− ≤ ≤  (8) 

 
(7) and (8) result in: 
 

mas

mas

or  
1

F p a        
3
2

 F p a  
3

≤ ∆

≥ ∆

   (9 a, b) 

  
The point when the gas forces (Fgas) are equivalent to the 
inertial forces on the ring is: 
 

mas

1
F p a 

2
 = ∆                            (10) 

 
In some models, it is slightly after this point that is 
considered the time when the piston ring will start to move 
as the inertial forces start to become greater than the gas 
forces.  However equations 9a,b show that the ring will 
actually start to move prior to this condition.  This is 
illustrated in Figure 2: 
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Figure 2: The change of flank contact depending on the 

relationship of mass force to gas force.  
 
a) At (Fmas/∆pa) = 0% the ring has full contact on the 
bottom flank of the groove.  Up to the ratio (Fmas/∆pa) of 
33 % the supporting force at the bottom flank balances the 
gas moment. During this interval, the back of the ring may 
be slowly lifting.  At 33% the piston ring only rests with the 
outside edge on the groove flank. 
 
b) In excess of 33 % the ring can no longer support the gas 
moment with just the supporting force on the bottom side of 
the groove. The lever arm of the moment is outside the ring.  
This leads to a twist of the piston ring so that the ring is 
now is in contact on both the bottom and top sides of the 
ring groove. 
 
c) At 50% the axial gas forces are equivalent to the inertial 
forces.  At this point, it might be thought that the ring 
should start moving up to the top side of the ring groove.  
However as noted above, the ring had already begun its 
transition earlier and was actually in contact with the upper 
side of the groove just after 33%. 
 
d) From 67 % and higher, the mass force becomes big 
enough to keep the ring totally at the top side of the groove 
and the ring may be resting exclusively on the top side of 
the ring groove. 
 
The above description is a simple two dimensional model.  
In reality the full three dimensional is much more complex 
as described in the subsequent sessions.  In this paper and in 
the work done by Liu et al. [13] and other, it has been found 
that the transition of the ring from the bottom side of the 
ring groove to the top side is not uniform circumferentially 
around the ring.  The inertial forces and moments react 
significantly different at the ring near the end gap than 180° 
from the gap. As a result it is common for the ring to lift 
near the end gaps first. 
In the condition where the ring lifts near the end gap, then 
the ring can no longer effectively seal the gases.  The gases 
 
 4 
will vent around the ring in the raised portion.  This will 
certainly affect blow-by. 
 
PART 2: DETAILED MATHEMATICAL 
DERVIATION OF THE THEORY 
 
Deformation of the Piston Ring through Forces and 
Moments  
 
By closing a piston ring from its free shape condition to its 
closed condition radial bending occurs. For piston rings 
with non-rectangular cross sections the principal axis of 
inertia are not perpendicular to the cylinder axis (Figure 3). 
A piston ring with a non-rectangular cross section changes 
position by twisting and arching in axial direction [9,10]. 
The reason for this is that such a ring avoids the bending 
stress as much as possible. But a ring with a symmetrical 
cross section can also twist and arch if it is loaded by forces 
and moments. This can occur as well if the forces and the 
moments are constant on the circumference.  
 
The kinematics of torsion and the bending of a curved beam 
were first developed by A.E.H. Love [2]. A specialized 
description for a circular beam can be found in Federhofer 
[3]. 
 
The following sections will show the calculation and 
analysis of bending and torsion based on this work. The 
methodology is described by a variation of elastic energies 
characterized by differential equations in conjunction with 
the boundary and equilibrium conditions. These equations 
have to be integrated under consideration of the reaction 
forces. The reaction forces result in response to the twist 
and arch of the piston ring in the groove.  
 
It should be noted that this paper does not describe the 
radial forces acting on the ring including the hydrodynamic 
lubrication of the ring face (Reynolds equation and the 
Reynolds boundary condition).  The details of these forces 
have been described in other papers.  However, while the 
description of these forces has not been included in the 
subsequent sections, they are important forces that act on 
the ring and affect the motion and twist of the ring.  These 
have been included in the overall model that was used. 
Copyright © 2009 by ASME



  

 
Figure 3: The main axis 

 
 
Change of Curvature and Torsion 
 
The coordinate system  i , j( )

r r
 of the principal axis of 

inertia is useful for the calculation of the elastic energy of a 
twisted piston ring. (Figure 3) The coordinate system 

i , j( )
r r

 with the coordinates (u, v)  is rotated by the angle 

α  against the coordinate system (x, y) . 
 
The curvature components of the ring in the coordinate 

system i , j( )
r r

 are: 

i

s

j

s

sin
        

r

cos

r

α
κ =

α
κ =

 (11 a,b) 

 
 
Where: 

rs  is the distance from the center of mass to the cylinder 

center axis. 
 
The piston ring can only move to the axial direction (y). 
Then the movement can be resolved into u and v which are 

 
 5 
the displacement in direction of the principal axis of inertia. 
According to Figure 3: 
 
u cos v sinα = α    (12) 

 
The equations (13a,b,c) are found in Federhofer [ 3 ]. 
 

2

i j 2

d v

ds
∆κ = −β κ −   (13a) 

2

j i 2

d u

ds
∆κ = +β κ +   (13b) 

 

( )i jd u v

ds

−β + κ + κ
τ =   (13c) 

 
Where: 
ß      is the twist angle 
∆κ   is the change of the curvatures 
τ    is the torsion 
ds  is the arc length 
 

sds r d= ϕ   (14) 

 
Where: 

ϕ is the ring angle [ ],ϕ∈ −π π  

 
The acronym z will be used. z is a non-dimensional 

variable, which describes the displacement depending on rs  

in direction of the cylinder axis. 
 

s

v
z

r cos
=

α
  (15) 

 
With the equations (11, 12, 14, 15) it is possible to rewrite 

equation (13a,b,c).  The notation used is:  f
df

d
′=

ϕ
 

s ir ( z )cos′′∆ = − β + ακ   (16a) 

 

s jr ( z )sin′′∆ = + β + ακ   (16b) 

 

sr  z′ ′= −β +τ   (16c) 

 
In addition to the change of the curvatures shown in the 
equations (16a,b), it is necessary to add the change of the 
curvatures which are based on the mounting of the piston 
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ring. (Change of curvature from the open or free shape 
condition to the closed condition)  
 

( )s rr k 1 cos∆κ = + ϕ   (17) 

 
Where: 
k is the piston ring factor [1,11]  
 

( )
s ir ( z )cos

 k 1 cos sin

′′∆ = − β + α

+ + ϕ α

κ
  (18a) 

 

( )
s jr ( z )sin

 k 1 cos cos

′′∆ = + β + α

+ + ϕ α

κ
  (18b) 

 

sr  z′ ′= −β +τ   (18c) 

 
 
The elastic energy 
 
The elastic energy, E, will be composed of the bending 
energy around the principal axis i, j and the torsion energy. 
 

( ) sF ,z r dE
+ π

−π

= β ϕ∫   (19a) 

( ) ( )

( )

2

i i

2 2
j j

1
F ,z E J

2
1 1

E J C
2 2

β = ∆κ

+ ∆κ + τ

  (19b) 

 
Where: 
 
E    is Young’s modulus 

( )
E E

G
2 1 2.6

= =
+ µ

 modulus of rigidity 

iJ  , jJ   principal moments of inertia  

torC G C=  torsional rigidity 

torC  torsion constant  

   
Equations (18a,b,c) will be inserted in equation (19b). 
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( )

( )( )

( )

( )
( )( )

( )
( )

2
s

22 2
i j

2

i j

2 2
i j

22

2 r
F ,z

E

J cos J sin z

C
z

E

2 J J sin cos

k 1 cos z

J sin J cos

 k 1 cos

β =

′′α + α β +

′ ′+ −β +

− − α α

′′× + ϕ β +

+ α + α

× + ϕ

 (20) 

 
The last summand is constant after integration and is 
omitted from further consideration. 
The principal moments of inertia 

iJ  and jJ  are transformed by known formulas to the axis 

of the coordinate system (x,y). 
 

2 2
yy i jI J cos J sin= α + α   (21a) 

 

( )xy j iI J J sin cos= − α α  (21b) 

 
Equation (20) is reduced to the following equation: 

( )

( ) ( )

( )( )

2
s

2 2tor
yy

xy

2 r
F , z

E

C
I z z

2.6
2 I k 1 cos z

                        

β =

′′ ′ ′β + + −β +

′′− + ϕ β +

 (22) 

If ( )M ϕ are the moments and ( )F ϕ the axial forces acting 
on the ring circumference (based on the circumferential unit 
of length) the variegate total energy is described by: 
 

 
( ) ( )

( ) s

s

F ,z M
r d

    F r z
E

+ π

−π

β − ϕ β
= ϕ

− ϕ

 
 
 

∫  

 
  (23) 
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The equations of Euler 

 
The necessary conditions for the minimum of equation (23) 
are the equations of Euler (24a,b). 
 

( ) ( )

( ) ( )

tor
yy

2
s

xy

C
I z z

2.6

r
M I k 1 cos

E
                        

′′′′β + + −β + =

ϕ + + ϕ  

  (24a) 

( ) ( )

( )

tor
yy

3
s

xy

C
I z z

2.6

r
F I k cos

E
                        

′′ ′′′′β + − −β + =

ϕ − ϕ  (24b) 

The piston ring gap ends are stress free because the values 
of the moments are zero. The results of this are the 
following boundary conditions: 
 

( )
( )

( )

z 0   

z 0   

z 0  

 for     and   

 

′−β + =

′′β + =

′′′β + =

ϕ = −π ϕ = π

 (25) 

 
New variables are introduced: 
 

( ) ( )

( ) ( ) ( ) ( )
2

s
o o o

yy

tor

yy

2
s

o
yy

M r
m f x    

I E

C
p

2.6 I

F r
f

I E

     

ϕ
ϕ = = ϕ ϕ

=

ϕ
ϕ =

 (26a-c) 

The variables are inserted in the equation ( 24a,b). 
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( ) ( )

( )
4

xy
o i i

i 1 yy

I

I

z p z

 m f x k 1 cos

                        
=

′′′′β + + −β + =

+ + + ϕ∑  (27a) 

( ) ( )
4

xy
o s i s

i 1 yy

I

I

z p z

 f r f r k cos

                        
=

′′ ′′′′β + − −β + =

+ − ϕ∑  (27b) 

The variables fi(ϕ)  describe the unknown reaction forces 
with the corresponding distances xi(ϕ)  to the center of mass 

(Figure 4) . By using the 3 functions gi  (28a,b,c) 

( ) ( )

( )

( )

4

1 i s i
i 0

4

2 i s
i 0

4

3 i i
i 0

g f r x      

g f r      

g f x

=

=

=

ϕ = +

ϕ =

ϕ =

∑

∑

∑

 (28a-c) 

 

( ) ( ) ( )1 2 3g g gϕ = ϕ + ϕ  (28d) 

 
it is possible to describe equations (27a,b) as equations 
(29a,b).  

( ) ( )

( ) ( )xy

yy

xx s

yy s

3

I

I

I y

I r

z p z

g k 1 cos

  k

                        

′′′′β + + −β + =

ϕ + + ϕ

−

 (29a) 

( ) ( )

( ) xy

yy

2

I

I

z p z

  g k cos

                        

′′ ′′′′β + − −β + =

ϕ − ϕ  (29b) 

The last summand of equation (29a) describes the reversing 
moments of the bending forces from mounting the piston 

ring with the lever arm ys . The variable ys  describes the 

distance from the center of mass to the pivot point of the 
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running surface. Reversing moments occur especially for 
asymmetrically barreled or taper-faced rings. 

 
Integration of Equations (29a,b) and the Balance 
 
The equations (29a,b) describe the deformation of the 
loaded piston ring. These equations can be solved by partial 
integration under the condition of the equations (25). The 
results are described in the following equations: 
 

( ) ( )

( )( ) ( )

( ) ( )

( )

xy

yy

xx s

yy s

xx s

yy s

1

1

3

1 p

2 p

1 p

2 p

1

p

1 p

p

I

I

I y

I r

I y

I r

g t sin t dt

g t t cos t dt

g t sin t dt

+ k 1 sin
2

k sin cos
2

k 1 cos

A cos Bsin C

                        

ϕ

−π

ϕ

−π

ϕ

−π

+

+

+

β = ϕ −

− ϕ − ϕ −

− ϕ −

ϕ
+ ϕ

ϕ
− ϕ − ϕ

− + ϕ

+ ϕ + ϕ +

 
 
 

 
 
 

∫

∫

∫

 (30a) 

( ) ( )

( )( ) ( )

( )( )

( ) ( )

xy

yy

xx s

yy s

1

1

2

2

1 p

2 p

1 p

2 p

1

p

1

p

1 p

p

I

I

I y

I r

z g t sin t dt

g t t cos t dt

g t t dt

g t sin t dt

+ k sin
2

k sin
2

A cos Bsin C

                        

ϕ

−π

ϕ

−π

ϕ

−π

ϕ

−π

+

+

+

= ϕ −

− ϕ − ϕ −

− ϕ −

+ ϕ −

ϕ
ϕ

ϕ
− ϕ

+ ϕ + ϕ +

∫

∫

∫

∫

 (30b) 
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A, B and C are the integration constants. They are 
eliminated by using the conditions of balance.  
The conditions of balance are: 
 

2

1

1

g d 0     

g sin d 0    

g cos d 0

π

−π

π

−π

π

−π

ϕ =

ϕ ϕ =

ϕ ϕ =

∫

∫

∫

  (31a-c) 

 
If equations (30a,b) are inserted into equations (29a,b), 
equations (30a,b) can be verified. 
 
The Reaction Forces  
 
The deformations are limited by the piston ring groove 
height.  According reaction forces appear which limit the 
deformations and force the ring into the groove.  This 
contact problem in the software is solved by the help of the 
procedure of Wolfe, a modified simplex algorithm [4,7,8].  
To calculate the complete piston environment at least 4 
functions fi(ϕ) are necessary. Two at the top side and two at 
the bottom side of the piston ring. In conjunction with the 
functions β(ϕ) and, z(ϕ)they describe the solution to the 
problem. 

 
Figure 4 shows the resultant of the externally acting 

forces  fo and the resulting reaction forces fi  
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The reaction forces act upon the levers ix (Figure 4). fo  is 

the force and f xo o  is the moment. fo and f xo o  act 

externally upon the piston ring. ( )i 1...4fi =  are the reaction 

forces that balance the ring. ( )S i 1...4i =  are the clearances 

between the ring and the groove.  C is the center of mass 

from whose distance the levers ix  are measured.  

( )i 1...4fi =   and  ( )S i 1...4i =  are alternative. Either 

( )S i 1...4i =  or ( )i 1...4fi =  must be 0 at every point at the 

circumference. 
 
That means that: 
 

( ) ( ) ( )iS f 0 i 1...4
i

= =ϕ ϕ   (32a) 

 
The restrictions of the algebra signs are also significant: 
 

( ) ( )

( ) ( )

( ) ( )
i

i

S 0 i 1...4
i

f 0   i 1...2

f 0   i 3...4

≥ =

≥ =

≤ =

ϕ

ϕ

ϕ

  (32b) 

  
If N is the axial clearance, it is possible to calculate the 
clearances with the help of the deformation of equation 
(30a,b).  
 

( ) ( )i s iS r z x    i 1...2= + β =  

bottom groove flank   (33a) 
 

( ) ( )i s iS N r z x  i 3...4= − + β =   

top groove flank  (33b) 
 
Under the conditions of the algebra signs (32b), it is 

necessary to calculate 6 functions ß, z and ( )i 1...4fi = . 

Therefore, 6 equations are available (30a,b) and the four 
equations of (32a).  
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Gas dynamics in the Clearances and in the Closed Gap 
of the Piston Ring 

 
Figure 5 : The gas flow to and from the volume behind 

the ring 

 
Figure 5 shows the gas flow between the piston and the 
piston ring top side and the piston ring bottom side 
respectively. The piston ring twists and the clearances are 
convergent. It is also possible that the clearances are 
divergent. This can happen, for example, if the twist angle 
is positive or during the ring movement. 
The gas flow is activated by the pressure difference p0 - pb 
and pb – pu. By this process the chamber Volb behind the 
ring is filled or emptied.  In summary, gas flows from the 
combustion chamber through the top clearances to the 
volume behind the ring and from there through the bottom 
clearances to the inter-ring volume. Part of the gas also 
flows directly through the gap ends to the inter-ring volume. 
This gas, flowing through the gap ends, which depends on 
the size of the closed gap, amounts to 30- 40 % of the total. 
It is also possible that the direction of the gas flow goes 
upward if the inter-ring pressure is higher then the 
combustion pressure (“blow-back”). 
 
The calculation of the gas flow and its pressure gradients, is 
fundamental for calculating the ring movement. It is not 
enough to calculate the flowing gas mass, it is absolutely 

essential to specify the state variable ( )p x . This value is 

decisively responsible for the reaction forces, twist and arch 
of the piston ring. The gas flow mass in the clearance is 
constant, the gas pressure depends on its distance x. The 
ring position and the twist influence the clearance geometry 
and vice versa the clearance geometry influences the 
deformation of the piston ring.  
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Physical Properties and the Calculation of the Mach 
Number 
 
The gas flow is described by the following physical 
conditions: 
 
a) subsonic-flow.  
 
b) In the clearance between the ring and the groove, the 
sound velocity cannot be exceeded. Therefore, no gas 
shocks are possible in the clearance. Due to the narrowness 
of the clearance in proportion to its length, the gas flow is 
highly restricted by friction. The gas molecules hit the ring 
side and the piston groove.  
 
c) This leads to a heat exchange between the groove flanks 
and the gas flow. Therefore, the flow is neither isothermal 
nor adiabatic. 
 
The equation of motion for gas under these conditions can 
be found in [5,6]. The problem c) is solved with the analogy 
of Reynolds, mentioned in [5]. 
The following differential equation for the Mach number is 
one of the important equations of motion from [5]. 

( )

2
2

2 2

2

2 S
2

S

2

2

2

k 1
1 Md M d A22

M 1 M A
k 1

1 M d T2  1 k M
1 M T

k 1
1 M dx2  k M 4f

1 M D

−
+

= −
−

−
+

+ +
−

−
+

+
−

   (34) 

  
M(x)  =V/c  Mach Number 
k = 1.4   ratio of specific heats 
A (x)  cross-sectional area of the clearance 
Ts (x) stagnation temperature 
f  coefficient of friction 
 f depends on the Reynolds Number  
D  mean hydraulic diameter 
 
To solve the differential equation (34) a nummerical 
integration is necessary. In this case, a Runge-Kutta method 
with step control is advisable because M varies more as it 
approaches 1. 
The gas flow mass w is constant inside the clearance length 
and can be calculated as:  

p
w A V k AM        

c
 is the density

= ρ =

ρ

 (35) 
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To start the calculation of (34), M has to be chosen so that 
the finished pressure pend = pb at the clearance end will be 
reached. Mstart has to be variated with the help of “regula 
falsi”. The other input values at the beginning of the 
clearance are known, so that the constant w  can be 
calculated with equation (35). It is also possible to calculate 
the pressure p(x) in the clearance with (35) as well the 
target value pend. 
 
Choked Flow by Friction  
  
Depending on the pressure gradient, it is possible that the 
flow is choked by friction. Choked flow happens during the 
leakage of the gas at the clearance end if the gas has reached 
sound velocity in the clearance. It immediately expands to 
the pressure level pb of the volume chamber. The excessive 
energy reacts by obelisk waves in the chamber outside of the 
clearance. The gas flow in the clearance is not influenced by 
this effect. By reason of the subsonic flow no choking can 
occur in the clearance. 
 
The gas velocity can not be bigger than the sound velocity. 
It is necessary to find Mstart, so that M inside the clearance 
reaches the maximum value and stays smaller then 1. At the 
end of the clearance a plimit is fixed. 
plimit depends only on conditions at the start and not on pb. 
pend can not be smaller than plimit. If pb < plimit then the flow 
is choked and at the end of the clearance is:  
pend =  plimit. 
 
In a choked flow and either convergent or straight 
clearance, M = 1 is reached at the end of the clearance. In 
divergent clearances M has its maximum close to the start 
of the clearance. The flow through the closed gap can be 
solved in the same way. 
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PART 3: MEASUREMENT AND SIMULATION 
 
Concept of measurements of ring movement 
(CUMMINS) 
 
Experimental Work 
Cummins Engine Company carried out the experimental 
work.  Information on part of this work was reported 
previously by Chen and Richardson [12]. 
 
Engine 
The engine used for this work was 

 
Engine Model: 1994 Cummins  
C Engine Displacement: 8.3L 
Rating:   186kW (250hp) at 2200rpm 
Bore:  114mm diameter 
Stroke:  135mm 
Connecting Rod Length: 216mm 
 
Instrumentation 
Cylinder #5 was instrumented with ten (10) sensors shown 
in Table 1 and Figure 6.  The sensors mounted on the piston 
used a grasshopper linkage system to bring out the 
measurements from the engine. 
 
Table 1 List of Instrumentation 
Channel # Sensor 

Label 
Description 

Pressures Sensors 
01 CylPr Cylinder Pressure 
02 Liner Liner Pressure 
03 L3MA Third Land Major Thrust Side 
04 L2MA Second Land Major Thrust Side 
05 L2MI Second Land Minor Thrust Side 
Ring Motion Sensors 
06 R2MI Second Ring Motion Sensor - Minor 

Thrust Side 
07 R1MI Top Ring Motion Sensor - Minor 

Thrust Side 
08 R3MA Oil Ring Motion Sensor - Major 

Thrust Side 
09 R2MA Second Ring Motion Sensor - Major 

Thrust Side 
10 R1MA Top Ring Motion Sensor - Major 

Thrust Side 
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Figure 6 - Cylinder Instrumentation 

 
The ring motion sensors were mounted on the top sides of 
the grooves to prevent a disruption of the sealing surface on 
the bottom side of the ring.  It should be noted that the top 
ring motion sensor could overlap with the inter step in the 
top ring.  The oil ring sensor was positioned in such a way 
that it could possibly overlap with the end of the ring.  
However, based on the measurements, the motion of the 
rings could clearly be seen. 
 
The liner pressure sensor was mounted to be able to 
establish a reference of the inter-ring gas pressure.  The 
sensor was placed in the liner at a position just below the 
top ring reversal at the bottom of the stroke. In this way the 
top ring never crossed the pressure sensor. It also allowed 
second land pressure measurements at Bottom Dead Center 
(BDC) witch was used for referencing the inter-ring gas 
pressure measurement. 
 
When measurements were made, 100 individual 
consecutive cycles of data were stored per data point.   
 
Measurement Results of One Condition Modeled 
 
Figure 7 shows the measurement results from one condition 
(1600rpm, full load).  The main characteristics of this 
measurement are that the top ring is shown to be fluttering.  
However, what is significant is that the fluttering is only 
seen on one side of the ring.  The measurement on the thrust 
side of the piston shows the fluttering, the ring does not 
flutter on the anti-thrust side of the piston.  This difference 
is not a function of the side of the piston as much as it is a 
Copyright © 2009 by ASME



  
function of the location of the ring gap relative to the 
measurement location.  This is described in detail in the 

following sections. 
 

 

 

Figure 7 Measurement results 
 

 
 

Figure 8: Simulation results of inter-ring pressure and top ring movement  
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Figure 9: Simulation results of the Gasflow  

 
Validation of Ring Movement and Blow-By by the 
Analytical Prediction Tool  
 
As a reference, the Cummins test results were used to 
validate and understand the ring movement with its effects 
on blow-by. Based on the above mathematics a 3D tool was 
developed to investigate and understand the influence of 
design and engine kinematics on the engine performance. 
This full analytically solved tool takes into account the 
coupled conditions of the engine kinematics as well as the 
conditions of the mechanical components. The engine cycle 
is calculated in 0.5 degree steps, which achieves the 
optimized required accuracy. Figure 8 shows the coupled 
effects of different positions around the circumference. Due 
to the limited space of this paper it is not possible to show 
the complex results of a 3D calculation in a detailed way. 
However, the shown measured engine cycle is a perfect 
example, especially the top ring, to explain the 
result of the twist the gap ends are propped up with the 
inner edges (Figure 8). In this condition the ring can no 
longer prevent blow-by completely around the 
circumference. As shown in Figure 10 the piston ring, 
especially near the gap ends, is completely open for the gas 
flow through the groove.  
 
In the next 20 degrees other areas around the circumference 
of the ring move upward by the change of (Fmas+ Ffriction) 
/ Fgas. In this case a completely stabilized contact at the top 
side of the groove can not be achieved because the 
maximum mass force is not big enough to overcome the 
moments.  Gas pressure differences are the main driver that 
forces the ring to start moving upward.  However, when the 
ring lifts near the gap first, it opens a gas flow path around 
the ring which causes all the gas pressures to equalize 
around the ring.  As a result, there is no longer any gas 
force pushing the ring upward anymore and the remaining 
forces and moments acting on the ring force the ring back 
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fundamentals of ring movements in a visual form. The 
example of the fluttering situation shows the effects of ring 
movement being described in this paper.  
 
The measured effect of ring fluttering is clearly visible 
when the inter-ring pressure equals the combustion 
pressure. The measurement result also show that the ring is 
not moving completely around its circumference to the top 
of the groove during the fluttering situation. The gap ends 
of the ring are already moving while the rest of the ring is 
still at the bottom flank. Because of this a gas flow path 
opens around the ring. 
At around 90 degrees after combustion, the top ring starts 
moving as shown in Figure 2. The ring still has contact at 
the bottom groove side around the circumference while the 
gap ends are already moving to the top groove side. As a 

down.  This effect repeats itself causing the fluttering 
motion of the ring. 
The twist and arching of the piston ring is caused by the 
moments acting on the rings, which can also occur in 
rectangular rings. If a ring does not lift uniformly around 
the ring all at once, the gas flow leak path is opened around 
the ring.  As a result, the ring no longer seals the gases.  In 
the example described above, when the ring lifts, the gases 
are blown upward (Figure 9). This may have an effect of 
reducing blow-by somewhat. However the “blow-back” 
may carry oil with it and adversely affect oil consumption.  
Also, as the ring twists and arches, it will affect the 
orientation of the running surface of the ring with respect to 
the liner.  This may affect how well the ring scrapes oil.  
 
A good understanding of how the forces act on the ring, 
how the ring moves in the groove and how the gases and oil 
flow past the ring is important for controlling oil 
consumption, blow-by and emissions. 
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Figure 10: Visualization results of 3D top ring movement at 95 degrees crank angle  
 

 
CONCLUSIONS 
A physical description of the real ring and gas forces, as 
well as the effects of the moments during the engine cycle, 
is introduced to predict ring twist and movement. It is 
clearly apparent that the effects of ring movement and twist 
are much more instructive by theoretical inspection than by 
detailed engine measurements. To optimize the ring designs 
it is necessary to understand the fundamentals of the ring 
behavior under the different engine conditions. The 
simulations offer a clear indication of improvement 
potential. The high flexibility of the program contributes to 
rapid optimization in development projects.  
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NOMENCLATURE 
 
a  wall thickness  
ϕ   ring angle 
F(ϕ)  axial force 
M(ϕ)  moment 
f(ϕ)  reduced axial force 
m(ϕ)  reduced moment 
β(ϕ)    twist angle 
K  curvature 
u , v  displacements 
τ  torsion 
s  arc length 
rS  distance from the center of mass to  
  the cylinder center axis 
z(ϕ) × rS  displacement in direction of the  

 cylinder axis 
E  Young´s modulus 
G  modulus of rigidity 
Ji , Jj  principal moments of inertia 
Ixx , Iyy , Ixy moments of inertia 
C  torsional rigidity 
Ctor   torsion constant 
k  piston ring factor  
A, B, C  integration constants 
S  clearance between ring and groove 
N  total clearance 
 
M(x)  Mach Number 
p(x)  gas pressure 
k  ratio of specific heats 
A(x)  cross-sectional area of the   
  clearance 
TS(x)  stagnation temperature 
f  coefficient of friction 
D  mean hydraulic diameter 
w  gas flow mass 
ρ  density 
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